Фильтр публикаций


Репост из: Github LLMs
💡 Distilabel

GitHub

https://t.me/deep_learning_proj


DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Paper submitted by #DeepSeek team has generated significant attention in the AI community.

This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.

This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.

Paper: https://arxiv.org/abs/2501.12948

#nn #LLM

@Machine_learn


JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.

Paper: https://arxiv.org/pdf/2411.07975v1.pdf

Code: https://github.com/deepseek-ai/janus

Datasets: GQA MMBench MM-Vet SEED-Bench

@Machine_learn


📃 Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development


📎 Study the paper


@Machine_learn


Репост из: Papers
در پروژه MedicalRec ما نياز به يه نفر جهت مشاركت داريم(جايگاه ٧)

Project Title:
MedRec: Medical recommender system for image classification without retraining

Github: https://github.com/Ramin1Mousa/MedicalRec

Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

Impact factor: 20.8


🔸 7- 200$❌
جهت مشارکت می تونید به ایدی بنده پیام بدین.
اموزش نحوه ی انجام کار ، ریویی مقاله و کد نویسی هم داخل این کار خواهیم داشت.

🧠🧠🧠🧠🧠
@Raminmousa








در پروژه MedicalRec ما نياز به يه نفر جهت مشاركت داريم(جايگاه ٧)

Project Title:
MedRec: Medical recommender system for image classification without retraining

Github: https://github.com/Ramin1Mousa/MedicalRec

Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

Impact factor: 20.8


🔸 7- 200$❌
جهت مشارکت می تونید به ایدی بنده پیام بدین.

🧠🧠🧠🧠🧠
@Raminmousa


Foundations of Geometry. DAVID HILBERT, PH. D.

📚 Book


@Machine_learn


⭐️ Fast Think-on-Graph: Wider, Deeper and Faster Reasoning of Large Language Model on Knowledge Graph

🖥 Github: https://github.com/dosonleung/fasttog

📕 Paper: https://arxiv.org/abs/2501.14300v1


@Machine_learn


Discrete Matematics and applications

🔗 link

@Machine_learn


در این پروژه امکان اموزش کامل کد نویسی مدل هم برای کسانی که مشارکت میکنن فراهم


Репост из: Papers
با عرض سلام پروژه MedicalRec تنها نفر ٤ ام باقي مونده و امشب استارت کار میباشد.
🫥🫥🫥🫥

هدف اصلی این پروژه اموزش یک مدل پیشنهاد دهنده ی مدل برای مسائله طبقه بندی تصاویر پزشکی
میباشد که از اموزش مجدد مدل ها جلوگیری میکند. این مسائله با جنبه جلوگیری از مصرف انرژی اموزشی و زمان اموزش مدل ها ارائه می شود. برای این منظور ۵۰۰۰ مقاله در این زمینه جمع اوری شده است. جزئیات بیشتر در لینک گیت قرار دارد.

Project Title:
MedRec: Medical recommender system for image classification without retraining

Github: https://github.com/Ramin1Mousa/MedicalRec

Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

Impact factor: 20.8



🔹 2- 600$❌
🔺 3- 500$❌
💠 4- 400$✅
🔺 5- 300$▫️
🔹 6- 200$❌
🔸 7- 200$❌
جهت مشارکت می تونید به ایدی بنده پیام بدین.

🧠🧠🧠🧠🧠
@Raminmousa


📄A Survey of Genetic Programming Applications in Modern Biological Research


📎 Study the paper


@Machine_learn


Free access to our secret channels ✅

📚 Free Data Science Books
👨‍💻 Programming Handwritten Notes
🎁 Python Free Courses
🤖 Learn AI with ChatGPT
🏆 Data Science Projects
👩‍🎓 Coding Projects
💝 Free Coding Certified Courses
💪 Quiz and Job Opportunities
And Many More......


Join now : https://t.me/machinelearning_deeplearning

Data Science & AI Jobs

Join fast before I delete the link ❤️


📄 Deep Generative Models for Therapeutic Peptide Discovery: A Comprehensive Review


📎 Study the paper


@Machine_learn


ML, DL, AND AI Cheat Sheet.pdf
7.5Мб
All Cheat Sheets
Machine Learning, Deep Learning,
Artificial Intelligence

@Machine_learn


Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems

Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations.

Paper: https://arxiv.org/pdf/2501.01557v2.pdf

Code: https://github.com/lwangvaleo/click_calib

Dataset: WoodScape

@Machine_learn


This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣  Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

'https://t.me/addlist/8_rRW2scgfRhOTc0' rel='nofollow'>https://t.me/addlist/8_rRW2scgfRhOTc0

https://t.me/codeprogrammer

Показано 20 последних публикаций.