Фильтр публикаций


در پروژه MedicalRec ما نياز به يه نفر جهت مشاركت داريم(جايگاه ٧)

Project Title:
MedRec: Medical recommender system for image classification without retraining

Github: https://github.com/Ramin1Mousa/MedicalRec

Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

Impact factor: 20.8


🔸 7- 200$❌
جهت مشارکت می تونید به ایدی بنده پیام بدین.

🧠🧠🧠🧠🧠
@Raminmousa


Foundations of Geometry. DAVID HILBERT, PH. D.

📚 Book


@Machine_learn


⭐️ Fast Think-on-Graph: Wider, Deeper and Faster Reasoning of Large Language Model on Knowledge Graph

🖥 Github: https://github.com/dosonleung/fasttog

📕 Paper: https://arxiv.org/abs/2501.14300v1


@Machine_learn


Discrete Matematics and applications

🔗 link

@Machine_learn


در این پروژه امکان اموزش کامل کد نویسی مدل هم برای کسانی که مشارکت میکنن فراهم


Репост из: Papers
با عرض سلام پروژه MedicalRec تنها نفر ٤ ام باقي مونده و امشب استارت کار میباشد.
🫥🫥🫥🫥

هدف اصلی این پروژه اموزش یک مدل پیشنهاد دهنده ی مدل برای مسائله طبقه بندی تصاویر پزشکی
میباشد که از اموزش مجدد مدل ها جلوگیری میکند. این مسائله با جنبه جلوگیری از مصرف انرژی اموزشی و زمان اموزش مدل ها ارائه می شود. برای این منظور ۵۰۰۰ مقاله در این زمینه جمع اوری شده است. جزئیات بیشتر در لینک گیت قرار دارد.

Project Title:
MedRec: Medical recommender system for image classification without retraining

Github: https://github.com/Ramin1Mousa/MedicalRec

Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

Impact factor: 20.8



🔹 2- 600$❌
🔺 3- 500$❌
💠 4- 400$✅
🔺 5- 300$▫️
🔹 6- 200$❌
🔸 7- 200$❌
جهت مشارکت می تونید به ایدی بنده پیام بدین.

🧠🧠🧠🧠🧠
@Raminmousa


📄A Survey of Genetic Programming Applications in Modern Biological Research


📎 Study the paper


@Machine_learn


Free access to our secret channels ✅

📚 Free Data Science Books
👨‍💻 Programming Handwritten Notes
🎁 Python Free Courses
🤖 Learn AI with ChatGPT
🏆 Data Science Projects
👩‍🎓 Coding Projects
💝 Free Coding Certified Courses
💪 Quiz and Job Opportunities
And Many More......


Join now : https://t.me/machinelearning_deeplearning

Data Science & AI Jobs

Join fast before I delete the link ❤️


📄 Deep Generative Models for Therapeutic Peptide Discovery: A Comprehensive Review


📎 Study the paper


@Machine_learn


ML, DL, AND AI Cheat Sheet.pdf
7.5Мб
All Cheat Sheets
Machine Learning, Deep Learning,
Artificial Intelligence

@Machine_learn


Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems

Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations.

Paper: https://arxiv.org/pdf/2501.01557v2.pdf

Code: https://github.com/lwangvaleo/click_calib

Dataset: WoodScape

@Machine_learn


This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣  Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

'https://t.me/addlist/8_rRW2scgfRhOTc0' rel='nofollow'>https://t.me/addlist/8_rRW2scgfRhOTc0

https://t.me/codeprogrammer


Lots of math for CS & ML. Looks pretty interesting.

📚 Book

@Machine_learn


Deep Learning 01.pdf
31.5Мб
Deep Learning Handwritten Notes.
#DL
#CNN

@Machine_learn


📘 ABI Bioinformatics Guide

🌐 Study


@Machine_learn


Physics IQ Benchmark: Do generative video models learn physical principles from watching videos

Book

@Machine_learn


📃 Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics



📎 Study the paper


@Machine_learn


Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach


NEW PAPER

Link: https://arxiv.org/abs/2501.13136

Abstract: Digital currencies have become popular in the last decade due to their non-dependency and decentralized nature. The price of these currencies has seen a lot of fluctuations at times, which has increased the need for prediction. As their most popular, Bitcoin(BTC) has become a research hotspot. The main challenge and trend of digital currencies, especially BTC, is price fluctuations, which require studying the basic price prediction model. This research presents a classification and regression model based on stack deep learning that uses a wavelet to remove noise to predict movements and prices of BTC at different time intervals. The proposed model based on the stacking technique uses models based on deep learning, especially neural networks and transformers, for one, seven, thirty and ninety-day forecasting. Three feature selection models, Chi2, RFE and Embedded, were also applied to the data in the pre-processing stage. The classification model achieved 63\% accuracy for predicting the next day and 64\%, 67\% and 82\% for predicting the seventh, thirty and ninety days, respectively. For daily price forecasting, the percentage error was reduced to 0.58, while the error ranged from 2.72\% to 2.85\% for seven- to ninety-day horizons. These results show that the proposed model performed better than other models in the literature.


@Machine_learn




امكان ريكام در اين مقاله وجود دارد...!

Показано 20 последних публикаций.