Posts filter


Forward from: Papers
با عرض سلام مقاله زیر در مرحله major revision می‌باشد. نفر ۴ ام از این مقاله قابل اضافه کردن است.

Abstract
Breast cancer stands as a prevalent cause of fatality among females on a global scale, with
prompt detection playing a pivotal role in diminishing mortality rates. The utilization of
ultrasound scans in the BUSI dataset for medical imagery pertaining to breast cancer has
exhibited commendable segmentation outcomes through the application of UNet and UNet++
networks. Nevertheless, a notable drawback of these models resides in their inattention towards
the temporal aspects embedded within the images. This research endeavors to enrich the
UNet++ architecture by integrating LSTM layers and self-attention mechanisms to exploit
temporal characteristics for segmentation purposes. Furthermore, the incorporation of a
Multiscale Feature Extraction Module aims to grasp varied scale features within the UNet++.
Through the amalgamation of our proposed methodology with data augmentation on the BUSI
with GT dataset, an accuracy rate of 98.88%, specificity of 99.53%, precision of 95.34%,
sensitivity of 91.20%, F1-score of 93.74, and Dice coefficient of 92.74% are achieved. These
findings demonstrate competitiveness with cutting-edge techniques outlined in existing
literature.
Keywords: Attention mechanisms, BUSI dataset, Deep Learning, Feature Extraction,
Multi-Scale features
دوستانی که نیاز دارن به ایدی بنده پیام بدن.

#Unet++
#Segmentation

@Raminmousa
@Machine_learn
https://t.me/+SP9l58Ta_zZmYmY0


Probability, Random Processes, and Statistical Analysis Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance

📕 Book


@Machine_learn


The Art of Data Science.pdf
6.2Mb
Book: The Art of Data Science
Authors: Roger D. Peng & Elizabeth Matsui

@Machine_learn


01. Time Series Visualization from Raw Data to Insights.pdf
11.7Mb
Time Series Visualization from Raw Data to Insights
🔹 #Code

@Machine_learn


New o3 OpenAI model is changing the game!

For a long time, ARC was seen as proof that AI models “can’t think.” The argument went: if they truly could, why do they perform so poorly on this benchmark?

Well, those days are over. The o3 model demonstrates not only the ability to think but also the capability to tackle tasks once considered out of reach.

👀 Check out the full breakdown of this breakthrough: https://arcprize.org/blog/oai-o3-pub-breakthrough

It might be time to rethink what AI can achieve. Looking forward to the release!

@Machine_learn


Gemini API Cookbook

📚 Github


@Machine_learn


Perfect Roadmap To Learn Data Science In 2024

📖 Book

@Machine_learn


🌟 SmolLM2



SmolLM2-1.7B🟢SmolLM2-1.7B-Instruct🟢Instruct GGUF

SmolLM2-360M🟠SmolLM2-360M-Instruct 🟠Instruct GGUF

SmolLM2-135M 🟠SmolLM2-135M-Instruct 🟠Instruct GGUF от комьюнити


▶️SmolLM2-1.7B :

from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

📌Apache 2.0 License.


🟡Demo SmolLM2 1.7B


@Machine_learn


Practitioner Guide for Creating Effective Prompts in Large Language Models

🔗 Paper

@Machine_learn


تنها نفر ۴ ام از این کار مشترک باقی مونده
شروع کار ۱ دی ماه هستش. جهت همکاری به ایدی بنده پیام بدین.
@Raminmousa


Introduction to Data Science – Lecture Material

🔗 Github

@Machine_learn


🀄 GuoFeng Webnovel: A Discourse-Level and Multilingual Corpus of Web Fiction

🖥 Github: https://github.com/longyuewangdcu/guofeng-webnovel

📕 Paper: https://arxiv.org/abs/2412.11732v1

🌟 Dataset: www2.statmt.org/wmt24/literary-trans

@Machine_learn


📃A Comprehensive Survey on Automatic Knowledge Graph Construction

📎 Study paper

@Machine_learn




⚡️ Byte Latent Transformer: Patches Scale Better Than Tokens

Byte Latent Transformer architecture (BLTs), a new byte-level LLM architecture that for the first time, matches tokenization-based LLM performance at scale, with significant improvements in inference efficiency and robustness.

🖥 Github: https://github.com/facebookresearch/blt

📕 Paper: https://arxiv.org/abs/2412.09871v1

🌟 Dataset: https://paperswithcode.com/dataset/mmlu

@Machine_learn


📃 Large language models and their applications in bioinformatics

📎 Study the paper

@Machine_learn


٣ روز براي شروع اين پروژه مونده...!


Forward from: Papers
با عرض سلام در راستاي ادامه تحقيقات مشترك سعي داريم از ١ ام دي ماه روي حوزه ي LLM مدل ها كار كنيم.
این کار تحت نظر استاد
Rex (Zhitao) Ying
انجام میشه.
link: https://scholar.google.com.au/citations?user=6fqNXooAAAAJ&hl=en
۲نفر براي همکاری نياز داريم.

BioPars: a pre-trained biomedical large language model for persian biomedical text mining.
١- مراحل اوليه: جمع اوري متن هاي فارسي بيولوژيكي از منابع (...)
٢- پيش پردازش متن ها و تميز كردن متن ها
٣- اموزش ترنسفورمرها ي مورد نظر
٤- استفاده از بردارها ي اموزش داده شده در سه تسك (...)
دوستاني كه مايل به مشاركت هستن مي تونين تا ١ دي بهم اطلاع بدن.
هزينه سرور به ازاي هر ساعت ١.٢ دلار مي باشد. و حدود ٢ هزار ساعت براي اموزش مدل زباني نياز ميباشد. هزينه به ترتيب براي نفرات علاوه بر انجام تسك ها به صورت زير مي باشد.
🔹نفر چهارم 500 دلار
🔺نفر پنجم 400 دلار
@Raminmousa
@Machine_learn
https://t.me/+SP9l58Ta_zZmYmY0


Large language models (LLMs): survey, technical frameworks,
and future challenges

https://link.springer.com/content/pdf/10.1007/s10462-024-10888-y.pdf

@Machine_learn


Large Language Models: A Survey

https://arxiv.org/pdf/2402.06196


@Machine_learn

20 last posts shown.